LinkedIn Mini Sudoku #135 Fir Tree Answer - December 24, 2025 Solution Guide

Published: Dec 24, 2025 | Category: Mini Sudoku

LinkedIn Mini Sudoku #135 Fir Tree - December 24, 2025 Step-by-Step Solution

Crack today's LinkedIn Mini Sudoku #135 Fir Tree puzzle from December 24, 2025. This 6x6 grid challenges you to fill rows, columns, and 2x3 boxes with digits 1-6 uniquely. Here's a detailed, logical walkthrough starting from the given clues. We'll label rows 1-6 top to bottom and columns A-F left to right.

Initial Grid Overview

A B C D E F
1 - - - 1 - -
2 - - 4 2 3 -
3 - - - 3 - -
4 - - 6 4 5 -
5 - 3 1 5 4 2
6 - - - 6 - -

Clues: D1=1, C2=4, D2=2, E2=3, D3=3, C4=6, D4=4, E4=5, B5=3, C5=1, D5=5, E5=4, F5=2, D6=6.

Step 1: Fill Row 5 (Easiest Start)

Row 5 has five clues: B5=3, C5=1, D5=5, E5=4, F5=2. Missing A5 and digit 6. A5 must be 6 (only spot left in row, column A empty for 6, bottom-left box needs 6).

A5: 6

Step 2: Bottom-Left Box and Column A

Bottom-left box (A5-F6, but 2x3: A-D5-6, wait no—boxes are 2x3: rows1-2/A-C, rows1-2/D-F; rows3-4/A-C etc. Standard: left boxes A-C, right D-F; top rows1-3? Wait, 6x6 is two rows high? No, 2x3 means 2 rows by 3 cols.

Boxes: Top-left: rows1-2 colsA-C; top-middle: rows1-2 D-F; mid-left rows3-4 A-C; etc. Bottom-left: rows5-6 A-C.

Bottom-left box rows5-6 A-C: A5=6, B5=3, C5=1. Needs 2,4,5. But row6 A-C empty. Column A row6 can't be 6 (A5),3(B5 row),1(C5 col). Wait, better: row5 has all now: 6,3,1,5,4,2.

Now column F row5=2, so F6 can't 2. Look at row6: only D6=6, so A6,B6,C6,E6,F6 need 1-5.

Step 3: Column D Naked Singles

Column D: D1=1, D2=2, D3=3, D4=4, D5=5, D6=6. Perfect! All filled 1-6. No empties left—wait, all were filled or now confirmed? D1 was clue 1, yes all clues or derived.

This locks mid-right box rows3-4 D-F: D3=3,D4=4; E4=5; needs 1,2,6 but row3 D=3, row4 C=6 wait no C is left.

Step 4: Row 2 Right Side

Row 2: C2=4, D2=2, E2=3, F2 empty. Missing 1,5,6. Top-right box rows1-2 D-F: D1=1,D2=2,E2=3. Has 1,2,3; needs 4,5,6. But C2=4 in row2 but C left box. F2 in top-right, so F2 one of 4,5,6 but row2 C=4 so not 4; column F row5=2 no conflict. Wait.

Column E: E2=3, E4=5, E5=4. Can't 3,4,5. Row1 E empty.

Step 5: Focus on Almost-Full Boxes - Bottom Row 6

Bottom-middle box rows5-6 D-F: row5 D5=5,E5=4,F5=2; row6 D6=6. Has 2,4,5,6; needs 1,3. So E6 and F6 are 1 and 3.

Column E: E2=3 so E6 can't 3 → E6=1, F6=3.

E6: 1
F6: 3

Step 6: Column F Chain

Column F now F5=2, F6=3. Row2 F empty, can't 2,3. Top-right box rows1-2 D-F has D1=1,D2=2,E2=3; needs 4,5,6 for F1,F2.

Bottom-right box rows5-6 D-F: D6=6,E6=1,F6=3,F5=2,E5=4,D5=5—all full! Good.

Step 7: Row 4 Fill

Row 4: C4=6, D4=4, E4=5, F4 empty. Missing 1,2,3. Mid-right box rows3-4 D-F: D3=3,D4=4,E4=5; row3 F empty, row4 F empty. Has 3,4,5; needs 1,2,6. But C4=6 in row4 left box.

Column F can't have 2(F5),3(F6),4(E5? no colF). Column F: F5=2,F6=3. Row4 F can't 6(C4 row),4(D4 row),5(E4 row).

Mid-right needs 1,2,6 but 6 where? Row3 F or F4. Column F row4 can't 6? Row4 has 6 already C4 yes can't. So F3=6 (only spot for 6 in box).

F3: 6? Wait no F3 row3 colF.

Wait, mid-right rows3-4 D-F: positions D3=3, E3 empty, F3 empty, D4=4,E4=5,F4 empty. Has 3,4,5; needs 1,2,6.

6 can't go row4 (C4=6 same row), so 6 must be in row3: E3 or F3.

Now column E: E2=3,E4=5,E5=4,E6=1; so E1,E3 empty, can't 1,3,4,5.

Let's find more.

Step 8: Top-Left Box and Pairs

Look at row1: only D1=1, missing 2-6.

Perhaps naked single in row1 column A.

Better systematic: let's place 6s.

Known 6s: A5=6, C4=6, D6=6.

Row1 needs 6: columns A,B,C,E,F possible (D=1).

Top-left box rows1-2 A-C: row2 C2=4, no 6 yet.

Column C: C2=4,C4=6,C5=1; so C1,C3,C6 empty can't 1,4,6.

Row6 C empty, column C can't 1,4,6; row6 has D6=6,F6=3,E6=1 so row6 C can't 1,3,6.

Let's fill row4 F4.

Row4 missing 1,2,3 for A4,B4,F4.

Mid-left box rows3-4 A-C: C4=6, no others. Needs 1-5.

Perhaps column B: only B5=3.

Let's find single for number 2.

Known 2s: D2=2, F5=2.

Look for box with few spots.

Bottom-left box rows5-6 A-C: A5=6,B5=3,C5=1; row6 A6,B6,C6 empty. Has 1,3,6; needs 2,4,5.

So A6,B6,C6 =2,4,5 perm.

Column A: A5=6; no other clues. Can have 2.

Column B: B5=3.

Column C: C5=1,C2=4,C4=6.

Now row6: A6 B6 C6 E6=1 F6=3 D6=6; so missing 2,4,5 for A,B,C exactly matches box.

Is there restriction? Column A row1-4 empty for now.

Let's look at mid-left box rows3-4 A-C: C4=6; others empty. Needs 1,2,3,4,5.

Row5 full: row5 A6 B3 C1 D5 E4 F2.

Now let's try column E full view: E2=3, E4=5, E5=4, E6=1; so missing E1 and E3: must be 2 and 6.

Column E missing 2,6 for E1,E3.

Step 9: Mid-Right Box 6 Placement

Mid-right rows3-4 D-F: D3=3 D4=4 E4=5; empty E3 F3 F4. Has 3,4,5; needs 1,2,6.

E3 is in column E, which needs 2 or 6 there. Perfect.

Row3: D3=3, others empty.

Can 6 go in F4? F4 row4, row4 C4=6 same row no. So 6 not F4.

F3 or E3 for 6.

Now top-right box rows1-2 D-F: D1=1 D2=2 E2=3; empty D nothing wait all D filled, E1 F1 F2.

Top-right empty: E1, F1, F2. Has 1,2,3; needs 4,5,6.

So E1 one of 4,5,6 but column E missing only 2,6 for E1 E3. Intersection: E1 must be 6 (4,5,6 intersect 2,6 =6).

E1: 6

Great! Now column E: E1=6, so E3 must be 2 (remaining).

E3: 2

Step 10: Cascade to F3

Mid-right now E3=2, D3=3,D4=4,E4=5; empty F3 F4. Has 2,3,4,5; needs 1,6.

6 can't F4 (row4 6 already), so F3=6, then F4=1.

F3: 6
F4: 1

Step 11: Row 4 Left Side

Row 4 now C4=6 D4=4 E4=5 F4=1; missing A4 B4: 2,3.

Has 1,4,5,6; missing 2,3 yes.

Bottom-left wait mid-left rows3-4 A-C: C4=6; A4 B4 =2,3 perm.

Column B B5=3, so B4 can't 3 → B4=2, A4=3.

B4: 2
A4: 3

Step 12: Column A Progress

Column A: A4=3, A5=6; row1,2,3,6 empty.

Step 13: Top-Right Remaining

Top-right rows1-2 D-F: D1=1 D2=2 E1=6 E2=3; empty F1 F2. Has 1,2,3,6; needs 4,5.

Row2 C2=4 same row so F2 can't 4 → F2=5, F1=4.

F2: 5
F1: 4

Step 14: Row 1 Right

Row1 now D1=1 E1=6 F1=4; missing A1 B1 C1: 2,3,5.

Step 15: Bottom-Left Row 6

Bottom-left rows5-6 A-C: row5 A6 B3 C1; needs 2,4,5 in A6 B6 C6.

Row6: A6 B6 C6 D6=6 E6=1 F6=3; missing 2,4,5 yes.

Column C: C1 ?, C2=4, C4=6, C5=1, C3?, C6? Can't repeat 1,4,6.

Column C missing 2,3,5 for C1,C3,C6.

Now 2,4,5 for row6 A B C, but column C row6 can't 4 (C2=4 same col), so C6=2 or 5.

Column A missing: known A4=3 A5=6; so 1,2,4,5 for A1,A2,A3,A6.

Step 16: Row 3 Fill

Row 3: D3=3 E3=2 F3=6; missing A3 B3 C3: 1,4,5.

Mid-left rows3-4 A-C: row4 A3=3? A4=3 B4=2 C4=6; row3 A3 B3 C3 empty. Has 2,3,6; needs 1,4,5.

Perfect match for row3 A-C.

Now column B: B4=2 B5=3; row3 B3 one of 1,4,5.

Top-left rows1-2 A-C empty except C2=4.

Column A row4=3 row5=6.

Let's see if single. Perhaps number 5 in column F done: F1=4 F2=5 F3=6 F4=1 F5=2 F6=3—all 1-6 perfect.

Step 17: Place 5s

Known 5s: D5=5 E4=5 F2=5.

Row1 needs 5 in A1 B1 C1 (since D1=1 E1=6 F1=4; missing 2,3,5).

Top-left box rows1-2 A-C: row2 C2=4; row1 A1 B1 C1 will have 2,3,5 but box needs all 1-6, row2 A2 B2 empty too.

Box top-left: positions A1 A2 B1 B2 C1 C2=4. Needs 1,2,3,5,6 (4 present).

Step 18: Column B 5 Impossible

Where can 5 go column B? B4=2 B5=3; possible B1 B2 B3 B6.

B3 in mid-left: needs 1,4,5 yes possible.

B6 in bottom-left needs 2,4,5 yes.

Now row6 needs 2,4,5 A6 B6 C6.

Column B row6 B6 possible 2,4,5 but col B has B4=2 B5=3, so B6 can't 2,3 → B6=4 or 5.

Similarly A6 col A no 4 or5 yet.

C6 col C can't 4,1,6; so C6 2 or5 (from 2,4,5 but no4).

So possible.

Let's look at row1 column C.

Perhaps fill top-middle box? Top-middle rows1-2 D-F full? D1=1 D2=2 E1=6 E2=3 F1=4 F2=5— yes has 1,2,3,4,5,6 perfect!

Step 19: Mid-Top Left? Wait mid-left row3.

Now top-left box: only C2=4 known. Empties A1 A2 B1 B2 C1.

Numbers needed 1,2,3,5,6.

Row1 A1 B1 C1 need 2,3,5 (from row1 missing).

So A1 B1 C1 = perm of 2,3,5.

Thus row2 A2 B2 must be 1,6 (remaining for box, since 4 present, 2,3,5 in row1).

Row2 A2 B2: 1 and 6.

Row2 full: A2 B2 C2=4 D2=2 E2=3 F2=5; yes missing 1,6 perfect.

Step 20: Column A Row2

Column A needs 1,2,4,5 (3,6 placed A4 A5); for A1 A2 A3 A6.

A1 is 2,3 or5 from row1. Intersect with col possible: 2 or5 possible (1,4 also but row1 no1,4).

Row1 missing 2,3,5; col A missing 1,2,4,5 so A1=2 or5 (3 not in col missing? Col missing 1,2,4,5 no 3 yes can't 3 because A4=3).

A4=3 so column A can't have 3 anywhere. Thus A1 can't 3 → A1=2 or 5.

Similarly B1 C1 the other including 3.

Step 21: Bottom-Left 5 and 2

Let's place 1s. Known 1s: D1=1, C5=1, E6=1, F4=1.

Row3 needs 1 in A3 B3 C3 (missing 1,4,5).

Now mid-left rows3-4 A-C: row4 A4=3 B4=2 C4=6; row3 A3= B3 C3=1,4,5.

Column A can't 3,2,6 (A4=3,A5=6, B4=2? No colA). Col A has A4=3 A5=6.

Col B has B4=2 B5=3.

Col C has C2=4 C4=6 C5=1.

For row3 A3: colA can't 3,6; from 1,4,5 all ok except if conflicts.

Now bottom-left needs 2,4,5 in A6 B6 C6.

Col C C6 can't 1,4,6 so from 2,4,5 only 2,5 possible for C6.

Suppose we look at 4 placement column C: col C missing 2,3,5; known no4? C2=4 yes has4.

Col C has4.

Row6 needs2,4,5; C6 can't4 so C6=2 or5.

B6 colB has B4=2 B5=3, missing 1,4,5,6 but row6 B6 from2,4,5 and can't2 so B6=4 or5.

A6 the remaining.

Step 22: Top-Left Row2 1 and6

Row2 A2 B2 =1,6.

Column A A2 one of1,6 but colA A5=6 so A2 can't6 → A2=1, B2=6.

A2: 1
B2: 6

Awesome! Column A now A2=1 A4=3 A5=6; missing A1 A3 A6: 2,4,5.

Step 23: Row1 A1

Row1 A1 B1 C1 =2,3,5.

A1 colA now missing 2,4,5 so A1=2 or5 (not4, and not3).

A1 from 2,5.

Step 24: Column B Update

Column B: B2=6 B4=2 B5=3; missing B1 B3 B6: 1,4,5.

Perfect, row1 B1 from 2,3,5 intersect colB 1,4,5 =5 (only common).

B1=5

Yes! Now row1 A1 C1 missing 2,3 (since B1=5).

A1=2 (only, since 2 or5 but5 taken, and3 impossible col).

A1: 2
C1: 3

Step 25: Top-Left Complete Check

Top-left: A1=2 A2=1 B1=5 B2=6 C1=3 C2=4. Has 1,2,3,4,5,6 yes!

Step 26: Row 3 Left

Row3 A3 B3 C3 =1,4,5.

Column A A1=2 A2=1 A4=3 A5=6; missing A3 A6=4,5.

Column B B1=5 B2=6 B4=2 B5=3; missing B3 B6=1,4.

Column C C1=3 C2=4 C4=6 C5=1; missing C3 C6=2,5.

Now row3 A3 from1,4,5 but colA remaining4,5 so A3=4 or5.

B3 from1,4,5 intersect colB 1,4 =1 or4.

C3 from1,4,5 intersect colC 2,5 wait 2,5 no overlap with1,4,5? 5 yes. C3=5 (only common).

C3: 5

Now row3 A3 B3 =1,4.

A3=4 or5 but now missing1,4 (5 in C3).

1,4 for A3 B3.

A3 colA remaining4,5 but5 taken so A3=4, B3=1.

A3: 4
B3: 1

Step 27: Bottom Row6

Now column A A3=4 so remaining A6=5 (2,4,5 minus2 A1,4 A3).

A6: 5

Row6 A6=5 B6 C6 D6=6 E6=1 F6=3; missing for row 2,4.

Needs all1-6: has1,3,5,6 missing2,4 for B6 C6.

Column B remaining B6=1,4 but1 in B3? B3=1 yes colB has1 now, so B6 can't1 → B6=4.

B6: 4

Then C6=2.

C6: 2

Step 28: Final Checks

All cells filled! Verify columns, rows, boxes.

Row3: A4 B1 C5 D3 E2 F6 all unique.

Column C: C1=3 C2=4 C3=5 C4=6 C5=1 C6=2 perfect.

Column A: A1=2 A2=1 A3=4 A4=3 A5=6 A6=5 perfect.

Column B: B1=5 B2=6 B3=1 B4=2 B5=3 B6=4 perfect.

All boxes match similarly.

Congratulations, puzzle solved! Check the official solution grid to confirm your work. Share your solve time in comments.

Daily LinkedIn Mini Sudoku solutions for Fir Tree #135 Question ID 135. More guides for LinkedIn Games puzzles coming daily.

Subscribe for Daily Updates

Get new content delivered straight to your inbox.

Notes

This blog content is generated for informational purposes. Check your puzzle before referring to the solution if applicable.

Sudoku Dec 24, 2025

Sudoku #135 - Fir Tree

LinkedIn Sudoku #135 (Fir Tree) for December 24, 2025 full solution with question numbers and solutions.


Disclaimer · Privacy Policy · Terms and Conditions
© 2025 LinkedIn Answers.
All Rights Reserved.