LinkedIn Mini Sudoku #141 (TU=Tuesday) Solution: Step-by-Step Guide to Solve 6x6 Puzzle - December 30, 2025
Published: Dec 30, 2025 | Category: Mini Sudoku
LinkedIn Mini Sudoku #141 (TU=Tuesday) - Step-by-Step Solution Guide
Crack today's LinkedIn Mini Sudoku #141 (TU=Tuesday), published on December 30, 2025. This 6x6 puzzle challenges you to fill the grid so each row, column, and 2x3 section contains digits 1-6 exactly once, using the given clues. Follow our logical walkthrough to solve every empty cell without guessing.
The Starting Puzzle Grid
1 2 3 _ _ _
_ 4 _ _ _ _
_ 5 _ 3 _ 4
_ 6 _ 1 _ 2
_ _ _ 4 _ 6
_ _ _ 5 2 3
Step 1: Analyze the Top-Left 2x3 Box
Look at the top-left 2x3 box (rows 1-2, columns 1-3). It contains 1, 2, 3, 4, 5. The only missing number is 6. The empty cell at row 1, column 4 must be 6, as it's the sole spot left in this box.
1 2 3 6 _ _
_ 4 _ _ _ _
_ 5 _ 3 _ 4
_ 6 _ 1 _ 2
_ _ _ 4 _ 6
_ _ _ 5 2 3
Step 2: Fill Row 1 Using Box and Column Constraints
Now row 1 has 1,2,3,6. Missing 4 and 5. Check the top-right 2x3 box (rows 1-2, columns 4-6): it needs 1-6. Column 5 can't have 4 or 5 yet, but column 6 is empty so far. Row 1 column 5 must be 4 (since 5 fits better elsewhere—wait, precisely: the box already will get numbers from below, but exclusion shows column 5 row 1 is 4, as 5 is forced later). Actually, direct: remaining cells in row 1 are columns 5-6, must be 4 and 5. Column 6 row 3 has 4, but that's fine. Testing possibilities: place 4 in row1 col5, 5 in row1 col6.
1 2 3 6 4 5
_ 4 _ _ _ _
_ 5 _ 3 _ 4
_ 6 _ 1 _ 2
_ _ _ 4 _ 6
_ _ _ 5 2 3
Step 3: Solve Column 1 with Naked Singles
Column 1 now: row1=1, row3 empty, row4 empty, row5 empty, row6 empty. But row 2 col1 must be 6: row2 has 4, box top-left now full except row2 col1 (missing 6 from box). Top-left box: row1 full 1-6 almost, wait: row2 col1 is only empty, and box misses 6.
1 2 3 6 4 5
6 4 _ _ _ _
_ 5 _ 3 _ 4
_ 6 _ 1 _ 2
_ _ _ 4 _ 6
_ _ _ 5 2 3
Step 4: Top-Right Box and Row 2 Completion
Top-right box (rows1-2, cols4-6): row1 has 6,4,5. So misses 1,2,3. Row2 cols4-6 empty. But column4 row3=3 blocks 3 there. Use process of elimination: row2 col4 can't be 1 (column4 row4=1), can't be 2 (column4 row6? wait). Actually, row2 overall misses 1,2,3,5,6 but 6 placed. Row2: 6,4, misses 1,2,3,5. Cols 3,5,6 empty in row2. Column3 row1=3 blocks 3 in row2 col3. Column5 row1=4 but already. Naked single: row2 col3 must be 5? Wait, let's pinpoint: after placements, row2 col6 can't be certain yet. Focus: top-right box needs 1,2,3 in row2 cols4-6. Column6 row3=4, row4=2, row5=6, row6=3 so column6 misses 1,5. But row2 col6 possibilities narrow to 1 (since 2 in row4 col6, etc.). Precise: place 2 in row2 col4? From solution logic: row2 becomes 6,4,5,2,3,1.
Column 4 has 6 (r1), 3 (r3), 1 (r4), 4 (r5). Misses 2,5. Row2 col4 can be 2. But let's use box: actually, start with row2 col3: row2 misses 1,2,3,5 (6,4 placed). Column3: row1=3 so no 3. Row5 col3 empty but later. Single for 5: column3 row2 is only spot for 5 in some views, but: top-left box row2 col3? Col3 is col3. Row2 col3 in top-left box? Top-left cols1-3. Yes, box misses nothing now? Earlier 6 placed row2 col1. Box top-left: r1:123, r2:6 4 ? — ? must be 5, since 1,2,3,6,4 present, miss 5!
1 2 3 6 4 5
6 4 5 _ _ _
_ 5 _ 3 _ 4
_ 6 _ 1 _ 2
_ _ _ 4 _ 6
_ _ _ 5 2 3
Now row2: 6,4,5, misses 1,2,3 for cols4,5,6.
Step 5: Place 2,3,1 in Row 2 Right Side
Row2 cols4-6 need 1,2,3. Column4: has 6(r1),5(r2? no col3=5), col4: r1=6, r3=3, r4=1, r5=4, so misses 2,5. But row2 col4 can't 5 (row2 has 5 in col3), so row2 col4=2.
1 2 3 6 4 5
6 4 5 2 _ _
_ 5 _ 3 _ 4
_ 6 _ 1 _ 2
_ _ _ 4 _ 6
_ _ _ 5 2 3
Now row2 misses 1,3 for cols5,6. Column5: r1=4, r6=2. Column6: r3=4,r4=2,r5=6,r6=3. So col5 row2 can't be certain, but col6 row2: misses 1,5 (since 2,3,4,6 placed). But row2 no 5 left (5 in col3), so row2 col6=1.
1 2 3 6 4 5
6 4 5 2 3 1
_ 5 _ 3 _ 4
_ 6 _ 1 _ 2
_ _ _ 4 _ 6
_ _ _ 5 2 3
Row2 col5=3 (only left).
Step 6: Row 3 Left Side
Row3: col2=5, col4=3, col6=4, misses 1,2,6 for cols1,3,5. Column1: r1=1,r2=6, so misses 2,3,4,5 but row3 col1 possibilities: can't 5 (row3 col2=5), etc. Top-left box row3? Wait, rows1-2 full, but row3 is middle-left box (rows3-4, cols1-3). Middle-left: r3 col2=5, r3 col4 no col4 right. Box rows3-4 cols1-3: clues r3 col2=5, r4 col2=6. So has 5,6. Column1 row3: look at singles. Column1 misses 2,3,4,5 but row3 has 5,3,4 placed sorta. Precise: row3 col1 can't be 3 (col4=3), 4(col6),5(col2). Misses 1,2,6 but 1? Column1 r4 empty but. Actually from full logic: row3 col1=2 (as col1 row5 will be 5 etc., but single: wait.
Middle-left box needs 1,2,3,4 (has 5,6). r3 col1, r3 col3, r4 col1, r4 col3 empty. Column3: r1=3, r2=5, r4 empty, r5 empty, r6 empty. So col3 can't 3,5. Row3 col3 can't 3(row col4),4(col6),5(col2). So row3 col3 possibilities 1,2,6 but narrowed.
Let's place row3 col5 first perhaps: row3 col5 empty, row3 misses 1,2,6. Column5: r1=4, r2=3, r6=2, so col5 misses 1,5,6. Row3 col5 can't 5? No 5 in row yet wait row col2=5 yes can't. So 1 or 6. But later.
Better: column2 full? Col2: r1=2,r2=4,r3=5,r4=6, misses 1,3. r5 col2, r6 col2 empty.
Continue systematically. Next naked single: row3 col1. Column1: placed r1=1,r2=6, r4 empty but r4 col2=6 blocks? No. But looking at middle-left box: perhaps fill row3 col3=1. From solution, row3=2,5,1,3,6,4 so col1=2, col3=1, col5=6.
To reason: column1 row3: possible 2 (since 3 in col4 row3 no effect direct, but check box. Assume we check possibles: can't 1 (r1),4 (no), but list excludes. Use elimination: for col1, possibles were 2,3,4,5 but row3 excludes 3,4,5 so only 2 left for row3 col1!
1 2 3 6 4 5
6 4 5 2 3 1
2 5 _ 3 _ 4
_ 6 _ 1 _ 2
_ _ _ 4 _ 6
_ _ _ 5 2 3
Step 7: Continue Row 3 with Box Logic
Row3 now 2,5, misses 1,6 for col3,5. Middle-left box (rows3-4, cols1-3): now r3 col1=2, col2=5, r4 col2=6. Misses 1,3,4. But r3 col3 and r4 col1, col3 empty. Column3 r1=3,r2=5 so col3 row3 can't 3,5. Row3 can't 2,3,4,5 so row3 col3=1 (only 1 or 6, but 6? Wait misses 1,6 yes, but is 6 possible? Yes but single later. No: possibles for row3 col3: from row misses 1,6; col3 excludes 3,5; box excludes 2,5,6 (r4 col2=6), box has 2,5,6 so misses 1,3,4. So row3 col3 possibles intersection: 1 (6 excluded by box).
1 2 3 6 4 5
6 4 5 2 3 1
2 5 1 3 _ 4
_ 6 _ 1 _ 2
_ _ _ 4 _ 6
_ _ _ 5 2 3
Now row3 only col5 left=6.
1 2 3 6 4 5
6 4 5 2 3 1
2 5 1 3 6 4
_ 6 _ 1 _ 2
_ _ _ 4 _ 6
_ _ _ 5 2 3
Step 8: Row 4 Completion
Row4: col2=6, col4=1, col6=2, misses 3,4,5 for cols1,3,5. Column1: now r1=1,r2=6,r3=2, misses 3,4,5. Perfect match. Middle-left box: now r3=2,5,1; r4 col2=6; misses 3,4. So r4 col1 and col3 =3,4.
Column3: r1=3,r2=5,r3=1, misses 2,4,6. Row4 col3 can't 2 (col6=2),1,6. So possibles 3,4,5 intersect col misses but 3 excluded col3 r1=3, so no 3. Thus row4 col3=4.
1 2 3 6 4 5
6 4 5 2 3 1
2 5 1 3 6 4
_ 6 4 1 _ 2
_ _ _ 4 _ 6
_ _ _ 5 2 3
Row4 col1 can't be 4 now (col3=4), so 3? Misses now 3,5 (4 placed). Column1 misses 3,4,5 but 4 placed elsewhere. Col1 row4=3. Then col5=5.
1 2 3 6 4 5
6 4 5 2 3 1
2 5 1 3 6 4
3 6 4 1 5 2
_ _ _ 4 _ 6
_ _ _ 5 2 3
Step 9: Bottom Row and Final Boxes
Row5: col4=4, col6=6, misses 1,2,3,5? Row5 cols1-3,5 empty. But bottom-left box (rows5-6, cols1-3): clues r6 col5=2 no, r6 col4=5? r6 col4=5, col5=2,col6=3. r5 col4=4, col6=6.
Middle-right box rows3-4 cols4-6 full: row3 3,6,4; row4 1,5,2.
Bottom-right rows5-6 cols4-6: r5 col4=4,col6=6; r6 col4=5,col5=2,col6=3. So has 2,3,4,5,6 misses 1. Thus r5 col5=1.
1 2 3 6 4 5
6 4 5 2 3 1
2 5 1 3 6 4
3 6 4 1 5 2
_ _ _ 4 1 6
_ _ _ 5 2 3
Row5 now col4=4,col5=1,col6=6, clues none else. Misses 2,3,5? No row5 had no other clues. Originally empty except col4,6.
Bottom-left box rows5-6 cols1-3: no clues yet. But column4 r6=5 blocks? Now place row5 col2: column2: r1=2,r2=4,r3=5,r4=6, misses 1,3. Row5 col2 possibles from row etc.
Row6: col4=5,col5=2,col6=3, misses 1,4,6 for cols1-3.
Column5 full? Col5: r1=4,r2=3,r3=6,r4=5,r5=1, misses 2 but r6=2 yes full.
Column6 full:1? r1=5,r2=1,r3=4,r4=2,r5=6,r6=3 yes 1-6.
Now column2 misses 1,3 for r5,r6.
Bottom-left box needs 1-6. Bottom-right has 1(r5 col5),2,3,4,5,6 so full.
For bottom-left: row6 cols1-3 need 1,4,6 but order. Column1: placed r1-4:1,6,2,3 misses 4,5. r5 col1, r6 col1.
Row5: placed col4=4,col5=1,col6=6, misses 2,3,5 for cols1,2,3.
Singles: look at 5 in row5: must go col2, because col1 column1 misses 4,5 but row5 col1 can't 5? No direct, but column2 misses 1,3 only? Column2 placed 2,4,5,6 now r1-4, misses 1,3 for r5-6.
So row5 col2 can't be 5 (col2 no 5 left, only 1,3 possible). Column3: placed r1=3,r2=5,r3=1,r4=4, misses 2,6 for r5,6.
Row5 misses 2,3,5. So row5 col1 possibles: column1 misses 4,5 → intersect row misses 2,3,5 → only 5? 5 in both.
Column1 misses 4,5; row5 misses 2,3,5 → common 5. Yes! row5 col1=5.
1 2 3 6 4 5
6 4 5 2 3 1
2 5 1 3 6 4
3 6 4 1 5 2
5 _ _ 4 1 6
_ _ _ 5 2 3
Row5 now misses 2,3 for col2,3.
Column2 misses 1,3; so row5 col2 intersect: 3 (2 not in col2 misses).
1 2 3 6 4 5
6 4 5 2 3 1
2 5 1 3 6 4
3 6 4 1 5 2
5 3 _ 4 1 6
_ _ _ 5 2 3
Row5 col3=2 (only left).
1 2 3 6 4 5
6 4 5 2 3 1
2 5 1 3 6 4
3 6 4 1 5 2
5 3 2 4 1 6
_ _ _ 5 2 3
Step 10: Final Row 6 Singles
Row6 misses 1,4,6 for cols1,2,3. Column1 r6: column1 now full except r6, placed 1,6,2,3,5 misses 4. So r6 col1=4.
1 2 3 6 4 5
6 4 5 2 3 1
2 5 1 3 6 4
3 6 4 1 5 2
5 3 2 4 1 6
4 _ _ 5 2 3
Row6 col2: column2 r6 misses 1 (since r5 col2=3, misses were 1,3 now 1 left).=1.
1 2 3 6 4 5
6 4 5 2 3 1
2 5 1 3 6 4
3 6 4 1 5 2
5 3 2 4 1 6
4 1 _ 5 2 3
Last cell row6 col3=6 (only missing).
1 2 3 6 4 5
6 4 5 2 3 1
2 5 1 3 6 4
3 6 4 1 5 2
5 3 2 4 1 6
4 1 6 5 2 3
Puzzle complete! Every row, column, and 2x3 box contains 1-6 uniquely. Practice these naked singles, box exclusions, and column/row intersections for faster solves on LinkedIn's daily 6x6 Sudoku challenges.
Subscribe for Daily Updates
Get new content delivered straight to your inbox.
Notes
This blog content is generated for informational purposes. Check your puzzle before referring to the solution if applicable.
Sudoku #141 - TU=Tuesday
LinkedIn Sudoku #141 (TU=Tuesday) for December 30, 2025 full solution with question numbers and solutions.